智力數(shù)學(xué)趣味題及答案集錦(3)
P%=25%
所以,答案為B。
例 7 甲乙兩名工人8小時(shí)共加736個(gè)零件,甲加工的速度比乙加工的速度快30%,問乙每小時(shí)加工多少個(gè)零件?
A.30個(gè) B.35個(gè) C.40個(gè) D.45個(gè) (2002年A類真題)
解析:選用方程法。設(shè)乙每小時(shí)加工X個(gè)零件,則甲每小時(shí)加工1.3X個(gè)零件,并可列方程如下:
(1+1.3X)×8=736
X=40
所以,選擇C。
例 8 已知甲的12%為13,乙的13%為14,丙的14%為15,丁的15%為16,則甲、乙、丙、丁4個(gè)數(shù)中最大的數(shù)是:
A.甲 B.乙 C.丙 D.丁 (2001年中央真題)
解析:顯然甲=13/12%;乙=14/13%;丙=15/14%;丁=16/15%,顯然最大與最小就在甲、乙之間,所以比較甲和乙的大小即可,甲/乙=13/12%/16/15%>1,
所以,甲>乙>丙>丁,選擇A。
例 10 某儲(chǔ)戶于1999年1月1 日存人銀行60000元,年利率為2.00%,存款到期日即2000年1月1 日將存款全部取出,國家規(guī)定凡1999年11月1日后孳生的利息收入應(yīng)繳納利息稅,稅率為20%,則該儲(chǔ)戶實(shí)際提取本金合計(jì)為
A.61 200元 B.61 160元 C.61 000元 D.60 040元
解析,如不考慮利息稅,則1999年1月1 日存款到期日即2000年1月1可得利息為60000×2%=1200,也即100元/月,但實(shí)際上從1999年11月1日后要收20%利息稅,也即只有2個(gè)月的利息收入要交稅,稅額=200×20%=40元
所以,提取總額為60000+1200-40=61160,正確答案為B。
十四. 尾數(shù)計(jì)算問題
1. 尾數(shù)計(jì)算法
知識(shí)要點(diǎn)提示:尾數(shù)這是數(shù)學(xué)運(yùn)算題解答的一個(gè)重要方法,即當(dāng)四個(gè)答案全不相同時(shí),我們可以采用尾數(shù)計(jì)算法,最后選擇出正確答案。
首先應(yīng)該掌握如下知識(shí)要點(diǎn):
2452+613=3065 和的尾數(shù)5是由一個(gè)加數(shù)的尾數(shù)2加上另一個(gè)加數(shù)的尾數(shù)3得到的。
2452-613=1839 差的尾數(shù)9是由被減數(shù)的尾數(shù)2減去減數(shù)的尾數(shù)3得到。
2452×613=1503076 積的尾數(shù)6是由一個(gè)乘數(shù)的尾2乘以另一個(gè)乘數(shù)的尾數(shù)3得到。
2452÷613=4 商的尾數(shù)4乘以除數(shù)的尾數(shù)3得到被除數(shù)的尾數(shù)2,除法的尾數(shù)有點(diǎn)特殊,請(qǐng)學(xué)員在考試運(yùn)用中要注意。
例1 99+1919+9999的個(gè)位數(shù)字是( )。
A.1 B.2 C.3 D.7 (2004年中央A、B類真題)
解析:答案的尾數(shù)各不相同,所以可以采用尾數(shù)法。9+9+9=27,所以答案為D。
例2 請(qǐng)計(jì)算(1.1)2 +(1.2)2 +(1.3)2 +(1.4)2 值是:
A.5.04 B.5.49 C.6.06 D.6.30型 (2002年中央A類真題)
解析:(1.1)2 的尾數(shù)為1,(1.2)2 的尾數(shù)為4,(1.3)2 的尾數(shù)為9,(1.4)2 的尾數(shù)為6,所以最后和的尾數(shù)為1+3+9+6的和的尾數(shù)即0,所以選擇D答案。
例3 3×999+8×99+4×9+8+7的值是:
A.3840 B.3855 C.3866 D.3877 (2002年中央B類真題)
解析:運(yùn)用尾數(shù)法。尾數(shù)和為7+2+6+8+7=30,所以正確答案為A。
2. 自然數(shù)N次方的尾數(shù)變化情況
知識(shí)要點(diǎn)提示:
我們首先觀察2n 的變化情況
21的尾數(shù)是2
22的尾數(shù)是4
23的尾數(shù)是8
24的尾數(shù)是6
25的尾數(shù)又是2
我們發(fā)現(xiàn)2的尾數(shù)變化是以4為周期變化的即21 、25、29……24n+1的尾數(shù)都是相同的。
3n是以“4”為周期進(jìn)行變化的,分別為3,9,7,1, 3,9,7,1 ……
7n是以“4”為周期進(jìn)行變化的,分別為9,3,1,7, 9,3,1,7 ……
8n是以“4”為周期進(jìn)行變化的,分別為8,4,2,6, 8,4,2,6 ……
4n是以“2”為周期進(jìn)行變化的,分別為4,6, 4,6,……
9n是以“2”為周期進(jìn)行變化的,分別為9,1, 9,1,……
5n、6n尾數(shù)不變。
例1 的末位數(shù)字是:
A.1 B.3 C.7 D.9 (2005年中央甲類真題)
解析:9n是以“2”為周期進(jìn)行變化的,分別為9,1, 9,1,……即當(dāng)奇數(shù)方時(shí)尾數(shù)為“9”,當(dāng)偶數(shù)方時(shí)尾數(shù)為“1”,1998為偶數(shù),所以原式的尾數(shù)為“1”,所以答案為A。
例2 19881989+1989 的個(gè)位數(shù)是 (2000年中央真題)
A.9 B.7 C.5 D.3
解析:由以上知識(shí)點(diǎn)我們可知19881989 的尾數(shù)是由 81989 的尾數(shù)確定的,1989÷4=497余1,所以81989 的尾數(shù)和81 的尾數(shù)是相同的,即19881989 的尾數(shù)為8。
我們?cè)賮砜?9891988 的尾數(shù)是由91988 的尾數(shù)確定的,1988÷4=497余0,這里注意當(dāng)余數(shù)為0時(shí),尾數(shù)應(yīng)和94、98 、912 …… 94n 尾數(shù)一致,所以91988 的尾數(shù)與94 的尾數(shù)是相同的,即為1。
綜上我們可以得到19881989 + 19891988 尾數(shù)是8+1=9,所以應(yīng)選擇C。
十五. 最小公倍數(shù)和最小公約數(shù)問題
1.關(guān)鍵提示:
最小公倍數(shù)與最大公約數(shù)的題一般不難,但一定要細(xì)致審題,千萬不要粗心。另外這類題往往和日期(星期幾)問題聯(lián)系在一起,要學(xué)會(huì)求余。
2.核心定義:
(1)最大公約數(shù):如果一個(gè)自然數(shù)a能被自然數(shù)b整除,則稱a為b的倍數(shù),b為a的約數(shù)。幾個(gè)自然數(shù)公有的約數(shù),叫做這幾個(gè)自然數(shù)的公約數(shù)。公約數(shù)中最大的一個(gè)公約數(shù),稱為這幾個(gè)自然數(shù)的最大公約數(shù)。
(2)最小公倍數(shù):如果一個(gè)自然數(shù)a能被自然數(shù)b整除,則稱a為b的倍數(shù),b為a的約數(shù)。幾個(gè)自然數(shù)公有的倍數(shù),叫做這幾個(gè)自然數(shù)的公倍數(shù).公倍數(shù)中最小的一個(gè)大于零的公倍數(shù),叫這幾個(gè)數(shù)的最小公倍數(shù)。
例題1:甲每5天進(jìn)城一次,乙每9天進(jìn)城一次,丙每12天進(jìn)城一次,某天三人在城里相遇,那么下次相遇至少要:
A.60天 B.180天 C.540天 D.1620天 (2003年浙江真題)
解析:下次相遇要多少天,也即求5,9,12的最小公倍數(shù),可用代入法,也可直接求。顯然5,9,12的最小公倍數(shù)為5×3×3×4=180。
所以,答案為B。
例題2:三位采購員定期去某商店,小王每隔9天去一次,大劉每隔11天去一次,老楊每隔7天去一次,三人星期二第一次在商店相會(huì),下次相會(huì)是星期幾?
A.星期一 B.星期二 C.星期三 D.星期四
解析:此題乍看上去是求9,11,7的最小公倍數(shù)的問題,但這里有一個(gè)關(guān)鍵詞,即“每隔”,“每隔9天”也即“每10天”,所以此題實(shí)際上是求10,12,8的最小公倍數(shù)。10,12,8的最小公倍數(shù)為5×2×2×3×2=120。120÷7=17余1,
所以,下一次相會(huì)則是在星期三,選擇C。
例題3:賽馬場的跑馬道600米長,現(xiàn)有甲、乙、丙三匹馬,甲1分鐘跑2圈,乙1分鐘跑3圈,丙1分鐘跑4圈。如果這三匹馬并排在起跑線上,同時(shí)往一個(gè)方向跑,請(qǐng)問經(jīng)過幾分鐘,這三匹馬自出發(fā)后第一次并排在起跑線上?( )
A.1/2 B.1 C.6 D.12
解析:此題是一道有迷惑性的題,“1分鐘跑2圈”和“2分鐘跑1圈”是不同概念,不要等同于去求最小公倍數(shù)的題。顯然1分鐘之后,無論甲、乙、丙跑幾圈都回到了起跑線上。
所以,答案為B。
