丰满少妇女人a毛片视频-酒色成人网-日韩欧美一-日韩精品一区二区av在线观看-成人久久免费-欧美精品一二三四区-国产午夜免费-亚洲男人第一天堂-一区二区三区福利视频-午夜激情影院-av中文天堂在线-免费一区二区-欧美日韩xxx-91区视频-亚洲另类激情专区小说图片-黄色的网站在线观看-香蕉精品在线

高分網(wǎng) > 通用學(xué)習(xí)方法 > 課堂學(xué)習(xí) >

八年級下冊人教版數(shù)學(xué)教案范文3篇

時間: 如英2 課堂學(xué)習(xí)

  數(shù)學(xué)是研究空間形式和數(shù)量關(guān)系的一門科學(xué),以下是學(xué)習(xí)啦小編要與大家分享的:八年級下冊人教版數(shù)學(xué)教案范文,供大家參考!

  八年級下冊人教版數(shù)學(xué)教案范文一

  教學(xué)目標(biāo)

  1.使學(xué)生能分析題目中的等量關(guān)系,掌握列分式方程解應(yīng)用題的方法和步驟,提高學(xué)生分析問題和解決問題的能力;

  2.通過列分式方程解應(yīng)用題,滲透方程的思想方法。

  教學(xué)重點和難點

  重點:列分式方程解應(yīng)用題.

  難點:根據(jù)題意,找出等量關(guān)系,正確列出方程.

  教學(xué)過程 設(shè)計

  一、復(fù)習(xí)

  例 解方程:

  (1)2x+xx+3=1; (2)15x=2×15 x+12;

  (3)2(1x+1x+3)+x-2x+3=1.

  解 (1)方程兩邊都乘以x(3+3),去分母,得

  2(x+3)+x2=x2+3x,即2x-3x=-6

  所以 x=6.

  檢驗:當(dāng)x=6時,x(x+3)=6(6+3)≠0,所以x=6是原分式方程的根.

  (2)方程兩邊都乘以x(x+12),約去分母,得

  15(x+12)=30x.

  解這個整式方程,得

  x=12.

  檢驗:當(dāng)x=12時,x(x+12)=12(12+12)≠0,所以x=12是原分式方程的根.

  (3)整理,得

  2x+2x+3+x-2x+3=1,即2x+2+x-2 x+3=1,

  即 2x+xx+3=1.

  方程兩邊都乘以x(x+3),去分母,得

  2(x+3)+x2=x(x+3),

  即 2x+6+x2=x2+3x,

  亦即 2x-3x=-6.

  解這個整式方程,得 x=6.

  檢驗:當(dāng)x=6時,x(x+3)=6(6+3)≠0,所以x=6是原分式方程的根.

  二、新課

  例1 一隊學(xué)生去校外參觀,他們出發(fā)30分鐘時,學(xué)校要把一個緊急通知傳給帶隊老師,派一名學(xué)生騎車從學(xué)校出發(fā),按原路追趕隊伍.若騎車的速度是隊伍進(jìn)行速度的2倍,這名學(xué)生追上隊伍時離學(xué)校的距離是15千米,問這名學(xué)生從學(xué)校出發(fā)到追上隊伍用了多少時間?

  請同學(xué)根據(jù)題意,找出題目中的等量關(guān)系.

  答:騎車行進(jìn)路程=隊伍行進(jìn)路程=15(千米);

  騎車的速度=步行速度的2倍;

  騎車所用的時間=步行的時間-0.5小時.

  請同學(xué)依據(jù)上述等量關(guān)系列出方程.

  答案:

  方法1 設(shè)這名學(xué)生騎車追上隊伍需x小時,依題意列方程為

  15x=2×15 x+12.

  方法2 設(shè)步行速度為x千米/時,騎車速度為2x千米/時,依題意列方程為

  15x-15 2x=12.

  解 由方法1所列出的方程,已在復(fù)習(xí)中解出,下面解由方法2所列出的方程.

  方程兩邊都乘以2x,去分母,得

  30-15=x,

  所以 x=15.

  檢驗:當(dāng)x=15時,2x=2×15≠0,所以x=15是原分式方程的根,并且符合題意.

  所以騎車追上隊伍所用的時間為15千米 30千米/時=12小時.

  答:騎車追上隊伍所用的時間為30分鐘.

  指出:在例1中我們運用了兩個關(guān)系式,即時間=距離速度,速度=距離 時間.

  如果設(shè)速度為未知量,那么按時間找等量關(guān)系列方程;如果設(shè)時間為未知量,那么按

  速度找等量關(guān)系列方程,所列出的方程都是分式方程.

  例2 某工程需在規(guī)定日期內(nèi)完成,若由甲隊去做,恰好如期完成;若由乙隊去做,要超過規(guī)定日期三天完成.現(xiàn)由甲、乙兩隊合做兩天,剩下的工程由乙獨做,恰好在規(guī)定日期完成,問規(guī)定日期是多少天?

  分析;這是一個工程問題,在工程問題中有三個量,工作量設(shè)為s,工作所用時間設(shè)為t,工作效率設(shè)為m,三個量之間的關(guān)系是

  s=mt,或t=sm,或m=st.

  請同學(xué)根據(jù)題中的等量關(guān)系列出方程.

  答案:

  方法1 工程規(guī)定日期就是甲單獨完成工程所需天數(shù),設(shè)為x天,那么乙單獨完成工程所需的天數(shù)就是(x+3)天,設(shè)工程總量為1,甲的工作效率就是x1,乙的工作效率是1x+3.依題意,列方程為

  2(1x+1x3)+x2-xx+3=1.

  指出:工作效率的意義是單位時間完成的工作量.

  方法2 設(shè)規(guī)定日期為x天,乙與甲合作兩天后,剩下的工程由乙單獨做,恰好在規(guī)定日期完成,因此乙的工作時間就是x天,根據(jù)題意列方程

  2x+xx+3=1.

  方法3 根據(jù)等量關(guān)系,總工作量—甲的工作量=乙的工作量,設(shè)規(guī)定日期為x天,則可列方程

  1-2x=2x+3+x-2x+3.

  用方法1~方法3所列出的方程,我們已在新課之前解出,這里就不再解分式方程了.重點是找等量關(guān)系列方程.

  三、課堂練習(xí)

  1.甲加工180個零件所用的時間,乙可以加工240個零件,已知甲每小時比乙少加工5個零件,求兩人每小時各加工的零件個數(shù).

  2.A,B兩地相距135千米,有大,小兩輛汽車從A地開往B地,大汽車比小汽車早出發(fā)5小時,小汽車比大汽車晚到30分鐘.已知大、小汽車速度的比為2:5,求兩輛汽車的速度.

  答案:

  1.甲每小時加工15個零件,乙每小時加工20個零件.

  2.大,小汽車的速度分別為18千米/時和45千米/時.

  四、小結(jié)

  1.列分式方程解應(yīng)用題與列一元一次方程解應(yīng)用題的方法與步驟基本相同,不同點是,解分式方程必須要驗根.一方面要看原方程是否有增根,另一方面還要看解出的根是否符合題意.原方程的增根和不符合題意的根都應(yīng)舍去.

  2.列分式方程解應(yīng)用題,一般是求什么量,就設(shè)所求的量為未知數(shù),這種設(shè)未知數(shù)的方法,叫做設(shè)直接未知數(shù).但有時可根據(jù)題目特點不直接設(shè)題目所求的量為未知量,而是設(shè)另外的量為未知量,這種設(shè)未知數(shù)的方法叫做設(shè)間接未知數(shù).在列分式方程解應(yīng)用題時,設(shè)間接未知數(shù),有時可使解答變得簡捷.例如在課堂練習(xí)中的第2題,若題目的條件不變,把問題改為求大、小兩輛汽車從A地到達(dá)B地各用的時間,如果設(shè)直接未知數(shù),即設(shè),小汽車從A地到B地需用時間為x小時,則大汽車從A地到B地需(x+5-12)小時,依題意,列方程

  135 x+5-12:135x=2:5.

  解這個分式方程,運算較繁瑣.如果設(shè)間接未知數(shù),即設(shè)速度為未知數(shù),先求出大、小兩輛汽車的速度,再分別求出它們從A地到B地的時間,運算就簡便多了.

  五、作業(yè)

  1.填空:

  (1)一件工作甲單獨做要m小時完成,乙單獨做要n小時完成,如果兩人合做,完成這件工作的時間是______小時;

  (2)某食堂有米m公斤,原計劃每天用糧a公斤,現(xiàn)在每天節(jié)約用糧b公斤,則可以比原計劃多用天數(shù)是______;

  (3)把a千克的鹽溶在b千克的水中,那么在m千克這種鹽水中的含鹽量為______千克.

  2.列方程解應(yīng)用題.

  (1)某工人師傅先后兩次加工零件各1500個,當(dāng)?shù)诙渭庸r,他革新了工具,改進(jìn)了操作方法,結(jié)果比第一次少用了18個小時.已知他第二次加工效率是第一次的2.5倍,求他第二次加工時每小時加工多少零件?

  (2)某人騎自行車比步行每小時多走8千米,如果他步行12千米所用時間與騎車行36千米所用的時間相等,求他步行40千米用多少小時?

  (3)已知輪船在靜水中每小時行20千米,如果此船在某江中順流航行72千米所用的時間與逆流航行48千米所用的時間相同,那么此江水每小時的流速是多少千米?

  (4)A,B兩地相距135千米,兩輛汽車從A地開往B地,大汽車比小汽車早出發(fā)5小時,小汽車比大汽車晚到30分鐘.已知兩車的速度之比是5:2,求兩輛汽車各自的速度.

  答案:

  1.(1)mn m+n; (2)m a-b-ma; (3)ma a+b.

  2.(1)第二次加工時,每小時加工125個零件.

  (2)步行40千米所用的時間為40 4=10(時).答步行40千米用了10小時.

  (3)江水的流速為4千米/時.

  課堂教學(xué)設(shè)計說明

  1.教學(xué)設(shè)計中,對于例1,引導(dǎo)學(xué)生依據(jù)題意,找到三個等量關(guān)系,并用兩種不同的方法列出方程;對于例2,引導(dǎo)學(xué)生依據(jù)題意,用三種不同的方法列出方程.這種安排,意在啟發(fā)學(xué)生能善于從不同的角度、不同的方向思考問題,激勵學(xué)生在解決問題中養(yǎng)成靈活的思維習(xí)慣.這就為在列分式方程解應(yīng)用題教學(xué)中培養(yǎng)學(xué)生的發(fā)散思維提供了廣闊的空間.

  2.教學(xué)設(shè)計中體現(xiàn)了充分發(fā)揮例題的模式作用.例1是行程問題,其中距離是已知量,求速度(或時間);例2是工程問題,其中工作總量為已知量,求完成工作量的時間(或工作效率).這些都是運用列分式方程求解的典型問題.教學(xué)中引導(dǎo)學(xué)生深入分析已知量與未知量和題目中的等量關(guān)系,以及列方程求解的思路,以促使學(xué)生加深對模式的主要特征的理解和識另?別,讓學(xué)生弄清哪些類型的問題可借助于分式方程解答,求解的思路是什么.學(xué)生完成課堂練習(xí)和作業(yè) ,則是識別問題類型,能把面對的問題和已掌握的模式在頭腦中建立聯(lián)系,探求解題思路.

  3.通過列分式方程解應(yīng)用題數(shù)學(xué),滲透了方程的思想方法,從中使學(xué)生認(rèn)識到方程的思想方法是數(shù)學(xué)中解決問題的一個銳利武器.方程的思想方法可以用“以假當(dāng)真”和“弄假成真”兩句話形容.如何通過設(shè)直接未知數(shù)或間接未知數(shù)的方法,假設(shè)所求的量為x,這時就把它作為一個實實在在的量.通過找等量關(guān)系列方程,此時是把已知量與假設(shè)的未知量平等看待,這就是“以假當(dāng)真”.通過解方程求得問題的解,原先假設(shè)的未知量x就變成了確定的量,這就是“弄假成真”.

  八年級下冊人教版數(shù)學(xué)教案范文二

  教學(xué)目標(biāo)

  1.使學(xué)生掌握分組后能運用提公因式和公式法把多項式分解因式;

  2.通過因式分解的綜合題的教學(xué),提高學(xué)生綜合運用知識的能力.

  教學(xué)重點和難點

  重點:在分組分解法中,提公因式法和分式法的綜合運用.

  難點:靈活運用已學(xué)過的因式分解的各種方法.

  教學(xué)過程 設(shè)計

  一、復(fù)習(xí)

  把下列各式分解因式,并說明運用了分組分解法中的什么方法.

  (1)a2-ab+3b-3a; (2)x2-6xy+9y2-1;

  (3)am-an-m2+n2; (4)2ab-a2-b2+c2.

  解 (1) a2-ab+3b-3a

  =(a2-ab)-(3a-3b)

  =a(a-b)-3(a-b)

  =(a-b)(a-3);

  (2)x2-6xy+9y2-1

  =(x-3y) 2-1

  =(x-3y+1)(x-3y-1);

  (3)am-an-m2+n2

  =(am-an)-(m2-n2)

  =a(m-n)-(m+n)(m-n)

  =(m-n)(a-m-n);

  (4)2ab-a2-b2+c2

  =c2-(a2+b2-2ab)

  =c2-(a-b) 2

  =(c+a-b)(c-a+b).

  第(1)題分組后,兩組各提取公因式,兩組之間繼續(xù)提取公因式.

  第(2)題把前三項分為一組,利用完全平方公式分解因式,再與第四項運用平方差公式

  繼續(xù)分解因式.

  第(3)題把前兩項分為一組,提取公因式,后兩項分為一組,用平方差公式分解因式,然后兩組之間再提取公因式.

  第(4)題把第一、二、三項分為一組,提出一個“-”號,利用完全平方公式分解因式,第四項與這一組再運用平方差公式分解因式.

  把含有四項的多項式進(jìn)行因式分解時,先根據(jù)所給的多項式的特點恰當(dāng)分解,再運用提公因式或分式法進(jìn)行因式分解.在添括號時,要注意符號的變化.

  這節(jié)課我們就來討論應(yīng)用所學(xué)過的各種因式分解的方法把一個多項式分解因式.

  二、新課

  例1 把 分解因式.

  問:根據(jù)這個多項式的特點怎樣分組才能達(dá)到因式分解的目的?

  答:這個多項式共有四項,可以把其中的兩項分為一組,所以有兩種分解因式的方法.

  解 方法一

  方法二

  例2 把分解因式.

  問:觀察這個多項式有什么特點?是否可以直接運用分組法進(jìn)行因式分解?

  答:這個多項式的各項都有公式因ab,可以先提取這個公因式,再設(shè)法運用分組法繼續(xù)分解因式.

  例3 把45m2-20ax2+20axy-5ay2分解因式.

  分析:這個多項式的各項有公因式5a,先提取公因式,再觀察余下的因式,可以按:一、三”分組原則進(jìn)行分組,然后運用公式法分解因式.

  解 45m2-20ax2+20axy-5ay2=5a(9m2-4x2+4xy-y2)

  =5a[9m2-(4x2-4xy+y2)]

  =5a[(3m2)-(2x-y) 2]

  =5a(3m+2x-y)(3m-2x+y).

  例4 把2(a2-3mn)+a(4m-3n)分解因式.

  分析:如果去掉多項式的括號,再恰當(dāng)分組,就可用分組分解法分解因式了.

  解 2(a2-3mn)+a(4m-3n)=2a2-6mn+4am-3an

  =(2a2-3an)+(4am-6mn)

  =a(2a-3n)+2m(2a-3n)

  =(2a-3n)(a+2m).

  指出:如果給出的多項式中有因式乘積,這時可先進(jìn)行乘法運算,把變形后的多項式按照分組原則,用分組分解法分解因式.

  三、課堂練習(xí)

  把下列各式分解因式:

  (1)a2+2ab+b2-ac-bc; (2)a2-2ab+b2-m2-2mn-n2;

  (3)4a2+4a-4a2b+b+1; (4)ax2+16ay2-a-8axy;

  (5)a(a2-a-1)+1; (6)ab(m2+n2)+mn(a2+b2);

  答案:

  (1)(a+b)(a+b-c); (2)(a-b+m+m)(a-b-m-n);

  (3)(2a+1)(2a+1-2ab+b); (4)a(x-4y+1)(x-4y-1);

  (5)(a-1) 2 (a+1); (6)(bm+an)(am+bn).

  四、小結(jié)

  1.把一個多項式因式分解時,如果多項式的各項有公因式,就先提出公因式,把原多項式變?yōu)檫@個公因式與另一個因式積的形式.如果另一個因式是四項(或四項以上)的多項式,再考慮用分組分解法因式分解.

  2.如果已知多項式中含有因式乘積的項與其他項之和(或差)時(如例3),先去掉括號,把多項式變形后,再重新分組.

  五、作業(yè)

  八年級下冊人教版數(shù)學(xué)教案范文三

  重點與難點分析:

  本節(jié)內(nèi)容的重點是定理.本定理是證明兩條線段相等的重要定理,它是把三角形中角的相等關(guān)系轉(zhuǎn)化為邊的相等關(guān)系的重要依據(jù),此定理為證明線段相等提供了又一種方法,這是本節(jié)的重點.推論1、2提供證明等邊三角形的方法,推論3是直角三角形的一條重要性質(zhì),在直角三角形中找邊和角的等量關(guān)系經(jīng)常用到此推論.

  本節(jié)內(nèi)容的難點是性質(zhì)與判定的區(qū)別。等腰三角形的性質(zhì)定理和判定定理是互逆定理,題設(shè)與結(jié)論正好相反.學(xué)生在應(yīng)用它們的時候,經(jīng)常混淆,幫助學(xué)生認(rèn)識判定與性質(zhì)的區(qū)別,這是本節(jié)的難點.另外本節(jié)的文字?jǐn)⑹鲱}也是難點之一,和上節(jié)結(jié)合讓學(xué)生逐步掌握解題的思路方法.由于知識點的增加,題目的復(fù)雜程度也提高,一定要學(xué)生真正理解定理和推論,才能在解題時從條件得到用哪個定理及如何用.

  教法建議:

  本節(jié)課教學(xué)方法主要是“以學(xué)生為主體的討論探索法”。在數(shù)學(xué)教學(xué)中要避免過多告訴學(xué)生現(xiàn)成結(jié)論。提倡教師鼓勵學(xué)生討論解決問題的方法,引導(dǎo)他們探索數(shù)學(xué)的內(nèi)在規(guī)律。具體說明如下:

  (1)參與探索發(fā)現(xiàn),領(lǐng)略知識形成過程

  學(xué)生學(xué)習(xí)過互逆命題和互逆定理的概念,首先提出問題:等腰三角形性質(zhì)定理的逆命題的什么?找一名學(xué)生口述完了,接下來問:此命題是否為真命?等同學(xué)們證明完了,找一名學(xué)生代表發(fā)言.最后找一名學(xué)生用文字口述定理的內(nèi)容。這樣很自然就得到了定理.這樣讓學(xué)生親自動手實踐,積極參與發(fā)現(xiàn),滿打滿算了學(xué)生的認(rèn)識沖突,使學(xué)生克服思維和探求的惰性,獲得鍛煉機(jī)會,對定理的產(chǎn)生過程,真正做到心領(lǐng)神會。

  (2)采用“類比”的學(xué)習(xí)方法,獲取知識。

  由性質(zhì)定理的學(xué)習(xí),我們得到了幾個推論,自然想到:根據(jù)定理,我們能得到哪些特殊的結(jié)論或者說哪些推論呢?這里先讓學(xué)生發(fā)表意見,然后大家共同分析討論,把一些有價值的、甚至就是教材中的推論板書出來。如果學(xué)生提到的不完整,教師可以做適當(dāng)?shù)狞c撥引導(dǎo)。

  (3)總結(jié),形成知識結(jié)構(gòu)

  為了使學(xué)生對本節(jié)課有一個完整的認(rèn)識,便于今后的應(yīng)用,教師提出如下問題,讓學(xué)生思考回答:(1)怎樣判定一個三角形是等腰三角形?有哪些定理依據(jù)?(2)怎樣判定一個三角形是等邊三角形?

  一.教學(xué)目標(biāo) :

  1.使學(xué)生掌握定理及其推論;

  2.掌握等腰三角形判定定理的運用;

  3.通過例題的學(xué)習(xí),提高學(xué)生的邏輯思維能力及分析問題解決問題的能力;

  4.通過自主學(xué)習(xí)的發(fā)展體驗獲取數(shù)學(xué)知識的感受;

  5.通過知識的縱橫遷移感受數(shù)學(xué)的辯證特征.

  二.教學(xué)重點:定理

  三.教學(xué)難點 :性質(zhì)與判定的區(qū)別

  四.教學(xué)用具:直尺,微機(jī)

  五.教學(xué)方法:以學(xué)生為主體的討論探索法

  六.教學(xué)過程 :

  1、新課背景知識復(fù)習(xí)

  (1)請同學(xué)們說出互逆命題和互逆定理的概念

  估計學(xué)生能用自己的語言說出,這里重點復(fù)習(xí)怎樣分清題設(shè)和結(jié)論。

  (2)等腰三角形的性質(zhì)定理的內(nèi)容是什么?并檢驗它的逆命題是否為真命題?

  啟發(fā)學(xué)生用自己的語言敘述上述結(jié)論,教師稍加整理后給出規(guī)范敘述:

  1.定理:如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等.

  (簡稱“等角對等邊”).

  由學(xué)生說出已知、求證,使學(xué)生進(jìn)一步熟悉文字轉(zhuǎn)化為數(shù)學(xué)語言的方法.

  已知:如圖,△ABC中,∠B=∠C.

  求證:AB=AC.

  教師可引導(dǎo)學(xué)生分析:

  聯(lián)想證有關(guān)線段相等的知識知道,先需構(gòu)成以AB、AC為對應(yīng)邊的全等三角形.因為已知∠B=∠C,沒有對應(yīng)相等邊,所以需添輔助線為兩個三角形的公共邊,因此輔助線應(yīng)從A點引起.再讓學(xué)生回想等腰三角形中常添的輔助線,學(xué)生可找出作∠BAC的平分線AD或作BC邊上的高AD等證三角形全等的不同方法,從而推出AB=AC.

  注意:(1)要弄清判定定理的條件和結(jié)論,不要與性質(zhì)定理混淆.

  (2)不能說“一個三角形兩底角相等,那么兩腰邊相等”,因為還未判定它是一個等腰三角形.

  (3)判定定理得到的結(jié)論是三角形是等腰三角形,性質(zhì)定理是已知三角形是等腰三角形,得到邊邊和角角關(guān)系.

  2.推論1:三個角都相等的三角形是等邊三角形.

  推論2:有一個角等于60°的等腰三角形是等邊三角形.

  要讓學(xué)生自己推證這兩條推論.

  小結(jié):證明三角形是等腰三角形的方法:①等腰三角形定義;②等腰三角形判定定理.

  證明三角形是等邊三角形的方法:①等邊三角形定義;②推論1;③推論2.

  3.應(yīng)用舉例

  例1.求證:如果三角形一個外角的平分線平行于三角形的一邊,那么這個三角形是等腰三角形.

  分析:讓學(xué)生畫圖,寫出已知求證,啟發(fā)學(xué)生遇到已知中有外角時,常??紤]應(yīng)用外角的兩個特性①它與相鄰的內(nèi)角互補;②它等于與它不相鄰的兩個內(nèi)角的和.要證AB=AC,可先證明∠B=∠C,因為已知∠1=∠2,所以可以設(shè)法找出∠B、∠C與∠1、∠2的關(guān)系.

  已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC.

  求證:AB=AC.

  證明:(略)由學(xué)生板演即可.

  補充例題:(投影展示)

  1.已知:如圖,AB=AD,∠B=∠D.

  求證:CB=CD.

  分析:解具體問題時要突出邊角轉(zhuǎn)換環(huán)節(jié),要證CB=CD,需構(gòu)造一個以 CB、CD為腰的等腰三角形,連結(jié)BD,需證∠CBD=∠CDB,但已知∠B=∠D,由AB=AD可證∠ABD=∠ADB,從而證得∠CDB=∠CBD,推出CB=CD.

  證明:連結(jié)BD,在 中, (已知)

  (等邊對等角)

  (已知)

  即

  (等教對等邊)

  小結(jié):求線段相等一般在三角形中求解,添加適當(dāng)?shù)妮o助線構(gòu)造三角形,找出邊角關(guān)系.

  2.已知,在 中, 的平分線與 的外角平分線交于D,過D作DE//BC交AC與F,交AB于E,求證:EF=BE-CF.

  分析:對于三個線段間關(guān)系,盡量轉(zhuǎn)化為等量關(guān)系,由于本題有兩個角平分線和平行線,可以通過角找邊的關(guān)系,BE=DE,DF=CF即可證明結(jié)論.

  證明: DE//BC(已知),

  BE=DE,同理DF=CF.

  EF=DE-DF

  EF=BE-CF

  小結(jié):

  (1)等腰三角形判定定理及推論.

  (2)等腰三角形和等邊三角形的證法.

  七.練習(xí)

  教材 P.75中1、2、3.

  八.作業(yè)

27843 乾安县| 紫云| 瑞丽市| 苏州市| 新余市| 乡城县| 佛山市| 拉萨市| 禄劝| 手游| 合江县| 高陵县| 宾川县| 广丰县| 溆浦县| 中超| 贡嘎县| 思茅市| 会泽县| 招远市| 伊春市| 吉水县| 桐柏县| 扎鲁特旗| 惠州市| 泾川县| 古交市| 准格尔旗| 营山县| 蒲城县| 子洲县| 张北县| 杂多县| 双峰县| 广元市| 双柏县| 平昌县| 平潭县| 宣武区| 桃源县| 宜宾县|