丰满少妇女人a毛片视频-酒色成人网-日韩欧美一-日韩精品一区二区av在线观看-成人久久免费-欧美精品一二三四区-国产午夜免费-亚洲男人第一天堂-一区二区三区福利视频-午夜激情影院-av中文天堂在线-免费一区二区-欧美日韩xxx-91区视频-亚洲另类激情专区小说图片-黄色的网站在线观看-香蕉精品在线

高分網(wǎng) > 高中學(xué)習(xí)方法 > 高三學(xué)習(xí)方法 > 高三數(shù)學(xué) >

高中數(shù)學(xué)常考重點知識點

時間: 飛龍 高三數(shù)學(xué)
數(shù)學(xué)有哪些知識點

注重借助于數(shù)軸和文氏圖解集合問題。

空集是一切集合的子集,是一切非空集合的真子集。

3. 注意下列性質(zhì):

(3)德摩根定律:

4. 你會用補集思想解決問題嗎?(排除法、間接法)

的取值范圍。

6. 命題的四種形式及其相互關(guān)系是什么?

(互為逆否關(guān)系的命題是等價命題。)

原命題與逆否命題同真、同假;逆命題與否命題同真同假。

7. 對映射的概念了解嗎?映射f:A→B,是否注意到A中元素的任意性和B中與之對應(yīng)元素的唯一性,哪幾種對應(yīng)能構(gòu)成映射?

(一對一,多對一,允許B中有元素?zé)o原象。)

8. 函數(shù)的三要素是什么?如何比較兩個函數(shù)是否相同?

(定義域、對應(yīng)法則、值域)

9. 求函數(shù)的定義域有哪些常見類型?

10. 如何求復(fù)合函數(shù)的定義域?

義域是_____________。

11. 求一個函數(shù)的解析式或一個函數(shù)的反函數(shù)時,注明函數(shù)的定義域了嗎?

12. 反函數(shù)存在的條件是什么?

(一一對應(yīng)函數(shù))

求反函數(shù)的步驟掌握了嗎?

(①反解x;②互換x、y;③注明定義域)

13. 反函數(shù)的性質(zhì)有哪些?

①互為反函數(shù)的圖象關(guān)于直線y=x對稱;

②保存了原來函數(shù)的單調(diào)性、奇函數(shù)性;

14. 如何用定義證明函數(shù)的單調(diào)性?

(取值、作差、判正負)

如何判斷復(fù)合函數(shù)的單調(diào)性?

∴……)

15. 如何利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性?

值是( )

A. 0 B. 1 C. 2 D. 3

∴a的最大值為3)

16. 函數(shù)f(x)具有奇偶性的必要(非充分)條件是什么?

(f(x)定義域關(guān)于原點對稱)

注意如下結(jié)論:

(1)在公共定義域內(nèi):兩個奇函數(shù)的乘積是偶函數(shù);兩個偶函數(shù)的乘積是偶函數(shù);一個偶函數(shù)與奇函數(shù)的乘積是奇函數(shù)。

17. 你熟悉周期函數(shù)的定義嗎?

函數(shù),T是一個周期。)

如:

18. 你掌握常用的圖象變換了嗎?

注意如下“翻折”變換:

19. 你熟練掌握常用函數(shù)的圖象和性質(zhì)了嗎?

的雙曲線。

應(yīng)用:①“三個二次”(二次函數(shù)、二次方程、二次不等式)的關(guān)系——二次方程

②求閉區(qū)間[m,n]上的最值。

③求區(qū)間定(動),對稱軸動(定)的最值問題。

④一元二次方程根的分布問題。

由圖象記性質(zhì)! (注意底數(shù)的限定!)

利用它的單調(diào)性求最值與利用均值不等式求最值的區(qū)別是什么?

20. 你在基本運算上常出現(xiàn)錯誤嗎?

21. 如何解抽象函數(shù)問題?

(賦值法、結(jié)構(gòu)變換法)

22. 掌握求函數(shù)值域的常用方法了嗎?

(二次函數(shù)法(配方法),反函數(shù)法,換元法,均值定理法,判別式法,利用函數(shù)單調(diào)性法,導(dǎo)數(shù)法等。)

如求下列函數(shù)的最值:

23. 你記得弧度的定義嗎?能寫出圓心角為α,半徑為R的弧長公式和扇形面積公式嗎?

24. 熟記三角函數(shù)的定義,單位圓中三角函數(shù)線的定義

25. 你能迅速畫出正弦、余弦、正切函數(shù)的圖象嗎?并由圖象寫出單調(diào)區(qū)間、對稱點、對稱軸嗎?

(x,y)作圖象。

27. 在三角函數(shù)中求一個角時要注意兩個方面——先求出某一個三角函數(shù)值,再判定角的范圍。

28. 在解含有正、余弦函數(shù)的問題時,你注意(到)運用函數(shù)的有界性了嗎?

29. 熟練掌握三角函數(shù)圖象變換了嗎?

(平移變換、伸縮變換)

平移公式:

圖象?

30. 熟練掌握同角三角函數(shù)關(guān)系和誘導(dǎo)公式了嗎?

“奇”、“偶”指k取奇、偶數(shù)。

A. 正值或負值 B. 負值 C. 非負值 D. 正值

31. 熟練掌握兩角和、差、倍、降冪公式及其逆向應(yīng)用了嗎?

理解公式之間的聯(lián)系:

應(yīng)用以上公式對三角函數(shù)式化簡。(化簡要求:項數(shù)最少、函數(shù)種類最少,分母中不含三角函數(shù),能求值,盡可能求值。)

具體方法:

(2)名的變換:化弦或化切

(3)次數(shù)的變換:升、降冪公式

(4)形的變換:統(tǒng)一函數(shù)形式,注意運用代數(shù)運算。

32. 正、余弦定理的各種表達形式你還記得嗎?如何實現(xiàn)邊、角轉(zhuǎn)化,而解斜三角形?

(應(yīng)用:已知兩邊一夾角求第三邊;已知三邊求角。)

33. 用反三角函數(shù)表示角時要注意角的范圍。

34. 不等式的性質(zhì)有哪些?

答案:C

35. 利用均值不等式:

值?(一正、二定、三相等)

注意如下結(jié)論:

36. 不等式證明的基本方法都掌握了嗎?

(比較法、分析法、綜合法、數(shù)學(xué)歸納法等)

并注意簡單放縮法的應(yīng)用。

(移項通分,分子分母因式分解,x的系數(shù)變?yōu)?,穿軸法解得結(jié)果。)

38. 用“穿軸法”解高次不等式——“奇穿,偶切”,從最大根的右上方開始

39. 解含有參數(shù)的不等式要注意對字母參數(shù)的討論

40. 對含有兩個絕對值的不等式如何去解?

(找零點,分段討論,去掉絕對值符號,最后取各段的并集。)

證明:

(按不等號方向放縮)

42. 不等式恒成立問題,常用的處理方式是什么?(可轉(zhuǎn)化為最值問題,或“△”問題)

43. 等差數(shù)列的定義與性質(zhì)

0的二次函數(shù))

項,即:

44. 等比數(shù)列的定義與性質(zhì)

46. 你熟悉求數(shù)列通項公式的常用方法嗎?

例如:(1)求差(商)法

解:

[練習(xí)]

(2)疊乘法

解:

(3)等差型遞推公式

[練習(xí)]

(4)等比型遞推公式

[練習(xí)]

(5)倒數(shù)法

47. 你熟悉求數(shù)列前n項和的常用方法嗎?

例如:(1)裂項法:把數(shù)列各項拆成兩項或多項之和,使之出現(xiàn)成對互為相反數(shù)的項。

解:

[練習(xí)]

(2)錯位相減法:

(3)倒序相加法:把數(shù)列的各項順序倒寫,再與原來順序的數(shù)列相加。

[練習(xí)]

48. 你知道儲蓄、貸款問題嗎?

△零存整取儲蓄(單利)本利和計算模型:

若每期存入本金p元,每期利率為r,n期后,本利和為:

△若按復(fù)利,如貸款問題——按揭貸款的每期還款計算模型(按揭貸款——分期等額歸還本息的借款種類)

若貸款(向銀行借款)p元,采用分期等額還款方式,從借款日算起,一期(如一年)后為第一次還款日,如此下去,第n次還清。如果每期利率為r(按復(fù)利),那么每期應(yīng)還x元,滿足

p——貸款數(shù),r——利率,n——還款期數(shù)

49. 解排列、組合問題的依據(jù)是:分類相加,分步相乘,有序排列,無序組合。

(2)排列:從n個不同元素中,任取m(m≤n)個元素,按照一定的順序排成一

(3)組合:從n個不同元素中任取m(m≤n)個元素并組成一組,叫做從n個不

50. 解排列與組合問題的規(guī)律是:

相鄰問題捆綁法;相間隔問題插空法;定位問題優(yōu)先法;多元問題分類法;至多至少問題間接法;相同元素分組可采用隔板法,數(shù)量不大時可以逐一排出結(jié)果。

如:學(xué)號為1,2,3,4的四名學(xué)生的考試成績

則這四位同學(xué)考試成績的所有可能情況是( )

A. 24 B. 15 C. 12 D. 10

解析:可分成兩類:

(2)中間兩個分數(shù)相等

相同兩數(shù)分別取90,91,92,對應(yīng)的排列可以數(shù)出來,分別有3,4,3種,∴有10種。

∴共有5+10=15(種)情況

51. 二項式定理

性質(zhì):

(3)最值:n為偶數(shù)時,n+1為奇數(shù),中間一項的二項式系數(shù)最大且為第

表示)

52. 你對隨機事件之間的關(guān)系熟悉嗎?

的和(并)。

(5)互斥事件(互不相容事件):“A與B不能同時發(fā)生”叫做A、B互斥。

(6)對立事件(互逆事件):

(7)獨立事件:A發(fā)生與否對B發(fā)生的概率沒有影響,這樣的兩個事件叫做相互獨立事件。

53. 對某一事件概率的求法:

分清所求的是:(1)等可能事件的概率(常采用排列組合的方法,即

(5)如果在一次試驗中A發(fā)生的概率是p,那么在n次獨立重復(fù)試驗中A恰好發(fā)生

如:設(shè)10件產(chǎn)品中有4件次品,6件正品,求下列事件的概率。

(1)從中任取2件都是次品;

(2)從中任取5件恰有2件次品;

(3)從中有放回地任取3件至少有2件次品;

解析:有放回地抽取3次(每次抽1件),∴n=103

而至少有2件次品為“恰有2次品”和“三件都是次品”

(4)從中依次取5件恰有2件次品。

解析:∵一件一件抽取(有順序)

分清(1)、(2)是組合問題,(3)是可重復(fù)排列問題,(4)是無重復(fù)排列問題。

54. 抽樣方法主要有:簡單隨機抽樣(抽簽法、隨機數(shù)表法)常常用于總體個數(shù)較少時,它的特征是從總體中逐個抽取;系統(tǒng)抽樣,常用于總體個數(shù)較多時,它的主要特征是均衡成若干部分,每部分只取一個;分層抽樣,主要特征是分層按比例抽樣,主要用于總體中有明顯差異,它們的共同特征是每個個體被抽到的概率相等,體現(xiàn)了抽樣的客觀性和平等性。

55. 對總體分布的估計——用樣本的頻率作為總體的概率,用樣本的期望(平均值)和方差去估計總體的期望和方差。

要熟悉樣本頻率直方圖的作法:

(2)決定組距和組數(shù);

(3)決定分點;

(4)列頻率分布表;

(5)畫頻率直方圖。

如:從10名女生與5名男生中選6名學(xué)生參加比賽,如果按性別分層隨機抽樣,則組成此參賽隊的概率為____________。

56. 你對向量的有關(guān)概念清楚嗎?

(1)向量——既有大小又有方向的量。

在此規(guī)定下向量可以在平面(或空間)平行移動而不改變。

(6)并線向量(平行向量)——方向相同或相反的向量。

規(guī)定零向量與任意向量平行。

(7)向量的加、減法如圖:

(8)平面向量基本定理(向量的分解定理)

的一組基底。

(9)向量的坐標表示

表示。

57. 平面向量的數(shù)量積

數(shù)量積的幾何意義:

(2)數(shù)量積的運算法則

[練習(xí)]

答案:

答案:2

答案:

58. 線段的定比分點

※. 你能分清三角形的重心、垂心、外心、內(nèi)心及其性質(zhì)嗎?

59. 立體幾何中平行、垂直關(guān)系證明的思路清楚嗎?

平行垂直的證明主要利用線面關(guān)系的轉(zhuǎn)化:

線面平行的判定:

線面平行的性質(zhì):

三垂線定理(及逆定理):

線面垂直:

面面垂直:

60. 三類角的定義及求法

(1)異面直線所成的角θ,0°<θ≤90°

(2)直線與平面所成的角θ,0°≤θ≤90°

(三垂線定理法:A∈α作或證AB⊥β于B,作BO⊥棱于O,連AO,則AO⊥棱l,∴∠AOB為所求。)

三類角的求法:

①找出或作出有關(guān)的角。

②證明其符合定義,并指出所求作的角。

③計算大小(解直角三角形,或用余弦定理)。

[練習(xí)]

(1)如圖,OA為α的斜線OB為其在α內(nèi)射影,OC為α內(nèi)過O點任一直線。

(2)如圖,正四棱柱ABCD—A1B1C1D1中對角線BD1=8,BD1與側(cè)面B1BCC1所成的為30°。

①求BD1和底面ABCD所成的角;

②求異面直線BD1和AD所成的角;

③求二面角C1—BD1—B1的大小。

(3)如圖ABCD為菱形,∠DAB=60°,PD⊥面ABCD,且PD=AD,求面PAB與面PCD所成的銳二面角的大小。

(∵AB∥DC,P為面PAB與面PCD的公共點,作PF∥AB,則PF為面PCD與面PAB的交線……)

61. 空間有幾種距離?如何求距離?

點與點,點與線,點與面,線與線,線與面,面與面間距離。

將空間距離轉(zhuǎn)化為兩點的距離,構(gòu)造三角形,解三角形求線段的長(如:三垂線定理法,或者用等積轉(zhuǎn)化法)。

如:正方形ABCD—A1B1C1D1中,棱長為a,則:

(1)點C到面AB1C1的距離為___________;

(2)點B到面ACB1的距離為____________;

(3)直線A1D1到面AB1C1的距離為____________;

(4)面AB1C與面A1DC1的距離為____________;

(5)點B到直線A1C1的距離為_____________。

62. 你是否準確理解正棱柱、正棱錐的定義并掌握它們的性質(zhì)?

正棱柱——底面為正多邊形的直棱柱

正棱錐——底面是正多邊形,頂點在底面的射影是底面的中心。

正棱錐的計算集中在四個直角三角形中:

它們各包含哪些元素?

63. 球有哪些性質(zhì)?

(2)球面上兩點的距離是經(jīng)過這兩點的大圓的劣弧長。為此,要找球心角!

(3)如圖,θ為緯度角,它是線面成角;α為經(jīng)度角,它是面面成角。

(5)球內(nèi)接長方體的對角線是球的直徑。正四面體的外接球半徑R與內(nèi)切球半徑r之比為R:r=3:1。

積為( )

答案:A

64. 熟記下列公式了嗎?

(2)直線方程:

65. 如何判斷兩直線平行、垂直?

66. 怎樣判斷直線l與圓C的位置關(guān)系?

圓心到直線的距離與圓的半徑比較。

直線與圓相交時,注意利用圓的“垂徑定理”。

67. 怎樣判斷直線與圓錐曲線的位置?

68. 分清圓錐曲線的定義

70. 在圓錐曲線與直線聯(lián)立求解時,消元后得到的方程,要注意其二次項系數(shù)是否為零?△≥0的限制。(求交點,弦長,中點,斜率,對稱存在性問題都在△≥0下進行。)

71. 會用定義求圓錐曲線的焦半徑嗎?

如:

通徑是拋物線的所有焦點弦中最短者;以焦點弦為直徑的圓與準線相切。

72. 有關(guān)中點弦問題可考慮用“代點法”。

答案:

73. 如何求解“對稱”問題?

(1)證明曲線C:F(x,y)=0關(guān)于點M(a,b)成中心對稱,設(shè)A(x,y)為曲線C上任意一點,設(shè)A'(x',y')為A關(guān)于點M的對稱點。

75. 求軌跡方程的常用方法有哪些?注意討論范圍。

(直接法、定義法、轉(zhuǎn)移法、參數(shù)法)

76. 對線性規(guī)劃問題:作出可行域,作出以目標函數(shù)為截距的直線,在可行域內(nèi)平移直線,求出目標函數(shù)的最值。

高中數(shù)學(xué)公式口訣《集合與函數(shù)》

內(nèi)容子交并補集,還有冪指對函數(shù)。性質(zhì)奇偶與增減,觀察圖象最明顯。

復(fù)合函數(shù)式出現(xiàn),性質(zhì)乘法法則辨,若要詳細證明它,還須將那定義抓。

指數(shù)與對數(shù)函數(shù),兩者互為反函數(shù)。底數(shù)非1的正數(shù),1兩邊增減變故。

函數(shù)定義域好求。分母不能等于0,偶次方根須非負,零和負數(shù)無對數(shù)

正切函數(shù)角不直,余切函數(shù)角不平;其余函數(shù)實數(shù)集,多種情況求交集。

兩個互為反函數(shù),單調(diào)性質(zhì)都相同;圖象互為軸對稱,Y=X是對稱軸

求解非常有規(guī)律,反解換元定義域;反函數(shù)的定義域,原來函數(shù)的值域。

冪函數(shù)性質(zhì)易記,指數(shù)化既約分數(shù);函數(shù)性質(zhì)看指數(shù),奇母奇子奇函數(shù),

奇母偶子偶函數(shù),偶母非奇偶函數(shù);圖象第一象限內(nèi),函數(shù)增減看正負。

《三角函數(shù)》

三角函數(shù)是函數(shù),象限符號坐標注。函數(shù)圖象單位圓,周期奇偶增減現(xiàn)。

同角關(guān)系很重要,化簡證明都需要。正六邊形頂點處,從上到下弦切割

中心記上數(shù)字1,連結(jié)頂點三角形;向下三角平方和,倒數(shù)關(guān)系是對角,

頂點任意一函數(shù),等于后面兩根除。誘導(dǎo)公式就是好,負化正后大化小,

變成稅角好查表,化簡證明少不了。二的一半整數(shù)倍,奇數(shù)化余偶不變,

將其后者視銳角,符號原來函數(shù)判。兩角和的余弦值,化為單角好求值,

余弦積減正弦積,換角變形眾公式。和差化積須同名,互余角度變名稱。

計算證明角先行,注意結(jié)構(gòu)函數(shù)名,保持基本量不變,繁難向著簡易變。

逆反原則作指導(dǎo),升冪降次和差積。條件等式的證明,方程思想指路明。

萬能公式不一般,化為有理式居先。公式順用和逆用,變形運用加巧用

1加余弦想余弦,1 減余弦想正弦,冪升一次角減半,升冪降次它為范

三角函數(shù)反函數(shù),實質(zhì)就是求角度,先求三角函數(shù)值,再判角取值范圍

利用直角三角形,形象直觀好換名,簡單三角的方程,化為最簡求解集

《不等式》

解不等式的途徑,利用函數(shù)的性質(zhì)。對指無理不等式,化為有理不等式。

高次向著低次代,步步轉(zhuǎn)化要等價。數(shù)形之間互轉(zhuǎn)化,幫助解答作用大。

證不等式的方法,實數(shù)性質(zhì)威力大。求差與0比大小,作商和1爭高下。

直接困難分析好,思路清晰綜合法。非負常用基本式,正面難則反證法。

還有重要不等式,以及數(shù)學(xué)歸納法。圖形函數(shù)來幫助,畫圖建模構(gòu)造法。

《數(shù)列》

等差等比兩數(shù)列,通項公式N項和。兩個有限求極限,四則運算順序換。

數(shù)列問題多變幻,方程化歸整體算。數(shù)列求和比較難,錯位相消巧轉(zhuǎn)換,

取長補短高斯法,裂項求和公式算。歸納思想非常好,編個程序好思考:

一算二看三聯(lián)想,猜測證明不可少。還有數(shù)學(xué)歸納法,證明步驟程序化:

首先驗證再假定,從 K向著K加1,推論過程須詳盡,歸納原理來肯定。

《復(fù)數(shù)》

虛數(shù)單位i一出,數(shù)集擴大到復(fù)數(shù)。一個復(fù)數(shù)一對數(shù),橫縱坐標實虛部。

對應(yīng)復(fù)平面上點,原點與它連成箭。箭桿與X軸正向,所成便是輻角度。

箭桿的長即是模,常將數(shù)形來結(jié)合。代數(shù)幾何三角式,相互轉(zhuǎn)化試一試。

代數(shù)運算的實質(zhì),有i多項式運算。i的正整數(shù)次慕,四個數(shù)值周期現(xiàn)。

一些重要的結(jié)論,熟記巧用得結(jié)果。虛實互化本領(lǐng)大,復(fù)數(shù)相等來轉(zhuǎn)化。

利用方程思想解,注意整體代換術(shù)。幾何運算圖上看,加法平行四邊形,

減法三角法則判;乘法除法的運算,逆向順向做旋轉(zhuǎn),伸縮全年模長短。

三角形式的運算,須將輻角和模辨。利用棣莫弗公式,乘方開方極方便。

輻角運算很奇特,和差是由積商得。四條性質(zhì)離不得,相等和模與共軛,

兩個不會為實數(shù),比較大小要不得。復(fù)數(shù)實數(shù)很密切,須注意本質(zhì)區(qū)別。

《排列、組合、二項式定理》

加法乘法兩原理,貫穿始終的法則。與序無關(guān)是組合,要求有序是排列。

兩個公式兩性質(zhì),兩種思想和方法。歸納出排列組合,應(yīng)用問題須轉(zhuǎn)化。

排列組合在一起,先選后排是常理。特殊元素和位置,首先注意多考慮。

不重不漏多思考,捆綁插空是技巧。排列組合恒等式,定義證明建模試。

關(guān)于二項式定理,中國楊輝三角形。兩條性質(zhì)兩公式,函數(shù)賦值變換式。

《立體幾何》

點線面三位一體,柱錐臺球為代表。距離都從點出發(fā),角度皆為線線成。

高中《立體幾何》

高中《立體幾何》

垂直平行是重點,證明須弄清概念。線線線面和面面、三對之間循環(huán)現(xiàn)。

方程思想整體求,化歸意識動割補。計算之前須證明,畫好移出的圖形。

立體幾何輔助線,常用垂線和平面。射影概念很重要,對于解題最關(guān)鍵。

異面直線二面角,體積射影公式活。公理性質(zhì)三垂線,解決問題一大片。

《平面解析幾何》

有向線段直線圓,橢圓雙曲拋物線,參數(shù)方程極坐標,數(shù)形結(jié)合稱典范。

笛卡爾的觀點對,點和有序?qū)崝?shù)對,兩者—一來對應(yīng),開創(chuàng)幾何新途徑。

兩種思想相輝映,化歸思想打前陣;都說待定系數(shù)法,實為方程組思想。

三種類型集大成,畫出曲線求方程,給了方程作曲線,曲線位置關(guān)系判。

四件工具是法寶,坐標思想?yún)?shù)好;平面幾何不能丟,旋轉(zhuǎn)變換復(fù)數(shù)求。

解析幾何是幾何,得意忘形學(xué)不活。圖形直觀數(shù)入微,數(shù)學(xué)本是數(shù)形學(xué)。

怎樣學(xué)好數(shù)學(xué)的技巧

1、認真“聽”的習(xí)慣。

為了教和學(xué)的同步,教師應(yīng)要求學(xué)生在課堂上集中思想,專心聽老師講課,認真聽同學(xué)發(fā)言,抓住重點、難點、疑點聽,邊聽邊思考,對中、高年級學(xué)生提倡邊聽邊做聽課筆記。

2、積極“想”的習(xí)慣。

積極思考老師和同學(xué)提出的問題,使自己始終置身于教學(xué)活動之中,這是提高學(xué)習(xí)質(zhì)量和效率的重要保證。學(xué)生思考、回答問題一般要求達到:有根據(jù)、有條理、符合邏輯。隨著年齡的升高,思考問題時應(yīng)逐步滲透聯(lián)想、假設(shè)、轉(zhuǎn)化等數(shù)學(xué)思想,不斷提高思考問題的質(zhì)量和速度。

3、仔細“審”的習(xí)慣。

審題能力是學(xué)生多種能力的綜合表現(xiàn)。教師應(yīng)要求學(xué)生仔細閱讀教材內(nèi)容,學(xué)會抓住字眼,正確理解內(nèi)容,對提示語、旁注、公式、法則、定律、圖示等關(guān)鍵性內(nèi)容更要認真推敲、反復(fù)琢磨,準確把握每個知識點的內(nèi)涵與外延。建議教師們經(jīng)常進行“一字之差義差萬”的專項訓(xùn)練,不斷增強學(xué)生思維的深刻性和批判性。

4、獨立“做”的習(xí)慣。

練習(xí)是教學(xué)活動的重要組成部分和自然延續(xù),是學(xué)生最基本、最經(jīng)常的獨立學(xué)習(xí)實踐活動,還是反映學(xué)生學(xué)習(xí)情況的主要方式。教師應(yīng)教育學(xué)生對知識的理解不盲從優(yōu)生看法,不受他人影響輕易改變自己的見解;對知識的運用不抄襲他人現(xiàn)成答案;課后作業(yè)要按質(zhì)、按量、按時、書寫工整完成,并能作到方法最佳,有錯就改。

5、善于“問”的習(xí)慣。

俗話說:“好問的孩子必成大器”。教師應(yīng)積極鼓勵學(xué)生質(zhì)疑問難,帶著知識疑點問老師、問同學(xué)、問家長,大力提倡學(xué)生自己設(shè)計數(shù)學(xué)問題,大膽、主動地與他人交流,這樣既能融洽師生關(guān)系,增進同學(xué)友情,又可以使學(xué)生的交際、表達等方面的能力逐步提高。

6、勇于“辯”的習(xí)慣。

討論和爭辯是思維最好的媒介,它可以形成師生之間、同學(xué)之間多渠道、廣泛的信息交流。讓學(xué)生在爭辯中表現(xiàn)自我、互相啟迪、交流所得、增長才干,最終統(tǒng)一對真知的認同。

7、力求“斷”的習(xí)慣。

民族的創(chuàng)新能力是綜合國力的重要表現(xiàn),因此新大綱強調(diào)在數(shù)學(xué)教學(xué)中應(yīng)重視培養(yǎng)學(xué)生的創(chuàng)新意識。教師應(yīng)積極鼓勵學(xué)生思考問題時不受常規(guī)思路局限,樂于和善于發(fā)現(xiàn)新問題,能夠從不同角度詮釋數(shù)學(xué)命題,能用不同方法解答問題,能創(chuàng)造性地操作或制作學(xué)具與模型。

8、提早“學(xué)”的習(xí)慣。

從小學(xué)生認識規(guī)律看,要獲得良好的學(xué)習(xí)成績,必須牢牢抓住預(yù)習(xí)、聽課、作業(yè)、復(fù)習(xí)四個基本環(huán)節(jié)。其中,課前預(yù)習(xí)教材可以幫助學(xué)生了解新知識的要點、重點、發(fā)現(xiàn)疑難,從而可以在課堂內(nèi)重點解決,掌握聽課的主動權(quán),使聽課具有針對性。隨著年級的升高、預(yù)習(xí)的重要性更加突出。

9、反復(fù)“查”的習(xí)慣。

培養(yǎng)學(xué)生檢查的能力和習(xí)慣,是提高數(shù)學(xué)學(xué)習(xí)質(zhì)量的重要措施,是培養(yǎng)學(xué)生自覺性和責(zé)任感的必要過程,這也是新大綱明確了的教學(xué)要求。練習(xí)后,學(xué)生一般應(yīng)從“是否符合題意,計算是否合理、靈活、正確,應(yīng)用題、幾何題的解答方法是否科學(xué)”等幾個方面反復(fù)檢查驗算。

10、客觀“評”的習(xí)慣。

學(xué)生客觀地評價自己和他人在學(xué)習(xí)活動中的表現(xiàn),本身就是一種高水平的學(xué)習(xí)。只有客觀地評價自己、評價他人,才能評出自信,評出不足,從而達到正視自我、不斷反思、追求進步的目的,逐步形成辯證唯物主義認識觀。

11、經(jīng)?!皠印钡牧?xí)慣。

數(shù)學(xué)知識具有高度的抽象性,小學(xué)生的思維帶有明顯的具體性,所以新大綱強調(diào)應(yīng)重視從學(xué)生的生活經(jīng)驗中學(xué)習(xí)理解數(shù)學(xué),加強實踐能力的培養(yǎng)。在教學(xué)中,教師應(yīng)強調(diào)學(xué)生手腦并用,以動促思,對難以理解的概念通過舉實例加以解決,對較復(fù)雜的應(yīng)用題通過畫圖找到正確的解答方法,對模糊的幾何知識通過剪剪拼拼或?qū)嶒炦_到投石問路的目的。

12、有心“集”的習(xí)慣。

學(xué)生在學(xué)習(xí)活動中犯錯并不可怕,可怕的是同一問題多次犯錯。為避免同一錯誤經(jīng)常犯,有責(zé)任民的教師在教室里布置了錯會診專欄,有心計的學(xué)生建立錯誤的知識檔案,將平時練習(xí)或考試中出現(xiàn)的錯題收集在一起,反復(fù)警示自己,值得提倡。

13、靈活“用”的習(xí)慣。

學(xué)習(xí)的目的在于應(yīng)用,要求學(xué)生在課堂上學(xué)到的知識加以靈活運用,既能起到鞏固和消化知識的作用,又有利于將知識轉(zhuǎn)化成能力,還能達到培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣的目的。

80761 根河市| 南溪县| 贵港市| 新营市| 水富县| 龙山县| 婺源县| 仁布县| 辽宁省| 乐至县| 湖口县| 桐梓县| 紫云| 健康| 敦煌市| 山西省| 揭阳市| 长垣县| 双牌县| 启东市| 两当县| 武义县| 南乐县| 鄂温| 陵川县| 抚顺市| 灯塔市| 武宣县| 疏附县| 九龙城区| 康平县| 调兵山市| 青海省| 成安县| 永济市| 佛学| 区。| 望都县| 台东县| 绥江县| 抚宁县|