7年級(jí)數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)
7年級(jí)數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)如下:
二元一次方程組
1.二元一次方程:含有兩個(gè)未知數(shù),并且含未知數(shù)項(xiàng)的次數(shù)是1,這樣的方程是二元一次方程.注意:一般說(shuō)二元一次方程有無(wú)數(shù)個(gè)解.
2.二元一次方程組:兩個(gè)二元一次方程聯(lián)立在一起是二元一次方程組.
3.二元一次方程組的解:使二元一次方程組的兩個(gè)方程,左右兩邊都相等的兩個(gè)未知數(shù)的值,叫二元一次方程組的解.注意:一般說(shuō)二元一次方程組只有唯一解(即公共解).
4.二元一次方程組的解法:
(1)代入消元法;(2)加減消元法;
(3)注意:判斷如何解簡(jiǎn)單是關(guān)鍵.
※5.一次方程組的應(yīng)用:
(1)對(duì)于一個(gè)應(yīng)用題設(shè)出的未知數(shù)越多,列方程組可能容易一些,但解方程組可能比較麻煩,反之則“難列易解”;
(2)對(duì)于方程組,若方程個(gè)數(shù)與未知數(shù)個(gè)數(shù)相等時(shí),一般可求出未知數(shù)的值;
(3)對(duì)于方程組,若方程個(gè)數(shù)比未知數(shù)個(gè)數(shù)少一個(gè)時(shí),一般求不出未知數(shù)的值,但總可以求出任何兩個(gè)未知數(shù)的關(guān)系.
一元一次不等式(組)
1.不等式:用不等號(hào)“>”“<”“≤”“≥”“≠”,把兩個(gè)代數(shù)式連接起來(lái)的式子叫不等式.
2.不等式的基本性質(zhì):
不等式的基本性質(zhì)1:不等式兩邊都加上(或減去)同一個(gè)數(shù)或同一個(gè)整式,不等號(hào)的方向不變; 不等式的基本性質(zhì)2:不等式兩邊都乘以(或除以)同一個(gè)正數(shù),不等號(hào)的方向不變; 不等式的基本性質(zhì)3:不等式兩邊都乘以(或除以)同一個(gè)負(fù)數(shù),不等號(hào)的方向要改變.
3.不等式的解集:能使不等式成立的未知數(shù)的值,叫做這個(gè)不等式的解;不等式所有解的集合,叫做這個(gè)不
等式的解集.
4.一元一次不等式:只含有一個(gè)未知數(shù),并且未知數(shù)的次數(shù)是1,系數(shù)不等于零的不等式,叫做一元一次不等式;它的標(biāo)準(zhǔn)形式是ax+b>0或ax+b<0 ,(a≠0).
5.一元一次不等式的解法:一元一次不等式的解法與解一元一次方程的解法類似,但一定要注意不等式性質(zhì)
3的應(yīng)用;注意:在數(shù)軸上表示不等式的解集時(shí),要注意空圈和實(shí)點(diǎn).
6.一元一次不等式組:含有相同未知數(shù)的幾個(gè)一元一次不等式所組成的不等式組,叫做一元一次不等式組;
7.一元一次不等式組的解集與解法:所有這些一元一次不等式解集的公共部分,叫做這個(gè)一元一次不等式組的解集;解一元一次不等式時(shí),應(yīng)分別求出這個(gè)不等式組中各個(gè)不等式的解集,再利用數(shù)軸確定這個(gè)不等式組的解集.
8.一元一次不等式組的解集的四種類型:設(shè) a>b
9.幾個(gè)重要的判斷:
整式的乘除
1.同底數(shù)冪的乘法:a·a=a ,底數(shù)不變,指數(shù)相加.
2.冪的乘方與積的乘方:(a)=a ,底數(shù)不變,指數(shù)相乘; (ab)=ab ,積的乘方等于各因式乘方的積.
3.單項(xiàng)式的乘法:系數(shù)相乘,相同字母相乘,只在一個(gè)因式中含有的字母,連同指數(shù)寫(xiě)在積里.
4.單項(xiàng)式與多項(xiàng)式的乘法:m(a+b+c)=ma+mb+mc ,用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加.
5.多項(xiàng)式的乘法:(a+b)·(c+d)=ac+ad+bc+bd ,先用多項(xiàng)式的每一項(xiàng)去乘另一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加.
6.乘法公式:
(1)平方差公式:(a+b)(a-b)= a-b,兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積等于這兩個(gè)數(shù)的平方差;
(2)完全平方公式:
?、?(a+b)=a+2ab+b, 兩個(gè)數(shù)和的平方,等于它們的平方和,加上它們的積的2倍;
?、?(a-b)=a-2ab+b , 兩個(gè)數(shù)差的平方,等于它們的平方和,減去它們的積的2倍;
‴ ③ (a+b-c)=a+b+c+2ab-2ac-2bc,略.
7.配方:
8.同底數(shù)冪的除法:a÷a=a ,底數(shù)不變,指數(shù)相減.
9.零指數(shù)與負(fù)指數(shù)公式:
(1)a=1 (a≠0); a=0-nmnm-n1
an,(a≠0). 注意:0,0無(wú)意義; 0-2
(2)有了負(fù)指數(shù),可用科學(xué)記數(shù)法記錄小于1的數(shù),例如:0.0000201=2.01×10 .
10.單項(xiàng)式除以單項(xiàng)式: 系數(shù)相除,相同字母相除,只在被除式中含有的字母,連同它的指數(shù)作為商的一個(gè)因式.
11.多項(xiàng)式除以單項(xiàng)式:先用多項(xiàng)式的每一項(xiàng)除以單項(xiàng)式,再把所得的商相加.
※12.多項(xiàng)式除以多項(xiàng)式:先因式分解后約分或豎式相除;注意:被除式-余式=除式·商式.
13.整式混合運(yùn)算:先乘方,后乘除,最后加減,有括號(hào)先算括號(hào)內(nèi). 線段、角、相交線與平行線
幾何A級(jí)概念:(要求深刻理解、熟練運(yùn)用、主要用于幾何證明)
幾何B級(jí)概念:(要求理解、會(huì)講、會(huì)用,主要用于填空和選擇題)
一 基本概念:
直線、射線、線段、角、直角、平角、周角、銳角、鈍角、互為補(bǔ)角、互為余角、鄰補(bǔ)角、兩點(diǎn)間的距離、相交線、平行線、垂線段、垂足、對(duì)頂角、延長(zhǎng)線與反向延長(zhǎng)線、同位角、內(nèi)錯(cuò)角、同旁內(nèi)角、點(diǎn)到直線的距離、平行線間的距離、命題、真命題、假命題、定義、公理、定理、推論、證明. 二 定理:
1.直線公理:過(guò)兩點(diǎn)有且只有一條直線. 2.線段公理:兩點(diǎn)之間線段最短. 3.有關(guān)垂線的定理:
(1)過(guò)一點(diǎn)有且只有一條直線與已知直線垂直;
(2)直線外一點(diǎn)與直線上各點(diǎn)連結(jié)的所有線段中,垂線段最短. 4.平行公理:經(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行.
三 公式:
直角=90°,平角=180°,周角=360°,1°=60′,1′=60″.
四 常識(shí):
1.定義有雙向性,定理沒(méi)有.
2.直線不能延長(zhǎng);射線不能正向延長(zhǎng),但能反向延長(zhǎng);線段能雙向延長(zhǎng).
3.命題可以寫(xiě)為“如果„„„那么„„„”的形式,“如果„„„”是命題的條件,“那么„„„” 是命題 的結(jié)論.
4.幾何畫(huà)圖要畫(huà)一般圖形,以免給題目附加沒(méi)有的條件,造成誤解. 5.數(shù)射線、線段、角的個(gè)數(shù)時(shí),應(yīng)該按順序數(shù),或分類數(shù).
6.幾何論證題可以運(yùn)用“分析綜合法”、“方程分析法”、“代入分析法”、“圖形觀察法”四種方法分析.
7.方向角:
8.比例尺:比例尺1:m中,1表示圖上距離,m表示實(shí)際距離,若圖上1厘米,表示實(shí)際距離m厘米.
9.幾何題的證明要用“論證法”,論證要求規(guī)范、嚴(yán)密、有依據(jù);證明的依據(jù)是學(xué)過(guò)的定義、公理、定理和推論.
