丰满少妇女人a毛片视频-酒色成人网-日韩欧美一-日韩精品一区二区av在线观看-成人久久免费-欧美精品一二三四区-国产午夜免费-亚洲男人第一天堂-一区二区三区福利视频-午夜激情影院-av中文天堂在线-免费一区二区-欧美日韩xxx-91区视频-亚洲另类激情专区小说图片-黄色的网站在线观看-香蕉精品在线

高分網(wǎng) > 初中學(xué)習(xí)方法 > 初三學(xué)習(xí)方法 > 初三數(shù)學(xué) >

中考數(shù)學(xué)難題方法

時(shí)間: 燕妮2 初三數(shù)學(xué)

讀懂?dāng)?shù)學(xué)新定義,聯(lián)系新舊知,類比尋辦法;抓數(shù)學(xué)題目中關(guān)鍵詞的閱讀與分析,迅速理解題目數(shù)量之間的內(nèi)在關(guān)系,理順變量關(guān)系,確定解題思路。重視最基本的策略———綜合與分析,挖掘、整理數(shù)學(xué)信息之間的內(nèi)在關(guān)系,理解理解數(shù)學(xué)問題,分析數(shù)量關(guān)系、尋找解題竅門,建立數(shù)學(xué)模型,實(shí)現(xiàn)由已知到未知的推導(dǎo)。

中考數(shù)學(xué)難題解除方法

1、

換元法

換元法是數(shù)學(xué)中一個(gè)非常重要而且應(yīng)用十分廣泛的解題方法。我們通常把未知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個(gè)比較復(fù)雜的數(shù)學(xué)式子中,用新的變元去代替原式的一個(gè)部分或改造原來的式子,使它簡化,使問題易于解決。

2、幾何變換法

在數(shù)學(xué)問題的研究中,常常運(yùn)用變換法,把復(fù)雜性問題轉(zhuǎn)化為簡單性的問題而得到解決。所謂變換是一個(gè)集合的任一元素到同一集合的元素的一個(gè)一一映射。中學(xué)數(shù)學(xué)中所涉及的變換主要是初等變換。有一些看來很難甚至于無法下手的習(xí)題,可以借助幾何變換法,化繁為簡,化難為易。另一方面,也可將變換的觀點(diǎn)滲透到中學(xué)數(shù)學(xué)教學(xué)中。將圖形從相等靜止條件下的研究和運(yùn)動(dòng)中的研究結(jié)合起來,有利于對圖形本質(zhì)的認(rèn)識(shí)。

幾何變換包括:(1)平移;(2)旋轉(zhuǎn);(3)對稱。

3、

歸納法

用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點(diǎn)是把已知和未知各量用面積公式聯(lián)系起來,通過運(yùn)算達(dá)到求證的結(jié)果。所以用面積法來解幾何題,幾何元素之間關(guān)系變成數(shù)量之間的關(guān)系,只需要計(jì)算,有時(shí)可以不添置補(bǔ)助線,即使需要添置輔助線,也很容易考慮到。

4、判別式法與韋達(dá)定理

一元二次方程ax2+bx+c=0(a、b、c屬于R,a≠0)根的判別,△=b2-4ac,不僅用來判定根的性質(zhì),而且作為一種解題方法,在代數(shù)式變形,解方程(組),解不等式,研究函數(shù)乃至幾何、三角運(yùn)算中都有非常廣泛的應(yīng)用。

韋達(dá)定理除了已知一元二次方程的一個(gè)根,求另一根;已知兩個(gè)數(shù)的和與積,求這兩個(gè)數(shù)等簡單應(yīng)用外,還可以求根的對稱函數(shù),計(jì)論二次方程根的符號(hào),解對稱方程組,以及解一些有關(guān)二次曲線的問題等,都有非常廣泛的應(yīng)用。

5、待定系數(shù)法

在解數(shù)學(xué)問題時(shí),若先判斷所求的結(jié)果具有某種確定的形式,其中含有某些待定的系數(shù),而后根據(jù)題設(shè)條件列出關(guān)于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的某種關(guān)系,從而解答數(shù)學(xué)問題,這種解題方法稱為待定系數(shù)法。它是中學(xué)數(shù)學(xué)中常用的方法之一。

6、構(gòu)造法

在解題時(shí),我們常常會(huì)采用這樣的方法,通過對條件和結(jié)論的分析,構(gòu)造輔助元素,它可以是一個(gè)圖形、一個(gè)方程(組)、一個(gè)等式、一個(gè)函數(shù)、一個(gè)等價(jià)命題等,架起一座連接條件和結(jié)論的橋梁,從而使問題得以解決,這種解題的數(shù)學(xué)方法,我們稱為構(gòu)造法。運(yùn)用構(gòu)造法解題,可以使代數(shù)、三角、幾何等各種數(shù)學(xué)知識(shí)互相滲透,有利于問題的解決。

7、反證法

反證法是一種間接證法,它是先提出一個(gè)與命題的結(jié)論相反的假設(shè),然后,從這個(gè)假設(shè)出發(fā),經(jīng)過正確的推理,導(dǎo)致矛盾,從而否定相反的假設(shè),達(dá)到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結(jié)論的反面只有一種)與窮舉反證法(結(jié)論的反面不只一種)。用反證法證明一個(gè)命題的步驟,大體上分為:(1)反設(shè);(2)歸謬;(3)結(jié)論。

反設(shè)是反證法的基礎(chǔ),為了正確地作出反設(shè),掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一個(gè)/一個(gè)也沒有;至少有n個(gè)/至多有(n一1)個(gè);至多有一個(gè)/至少有兩個(gè);唯一/至少有兩個(gè)。

歸謬是反證法的關(guān)鍵,導(dǎo)出矛盾的過程沒有固定的模式,但必須從反設(shè)出發(fā),否則推導(dǎo)將成為無源之水,無本之木。推理必須嚴(yán)謹(jǐn)。導(dǎo)出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設(shè)矛盾;自相矛盾。

7487 满洲里市| 克山县| 琼中| 扶风县| 崇左市| 金门县| 琼结县| 正蓝旗| 宜昌市| 尉犁县| 东丰县| 临沂市| 金华市| 新巴尔虎左旗| 广南县| 抚松县| 正阳县| 长宁县| 柯坪县| 右玉县| 双辽市| 阿拉善左旗| 合作市| 奎屯市| 景谷| 城步| 阿克苏市| 广饶县| 定陶县| 海城市| 衡阳县| 青田县| 阿拉善右旗| 奉化市| 莎车县| 福清市| 山西省| 双柏县| 漠河县| 远安县| 安西县|