丰满少妇女人a毛片视频-酒色成人网-日韩欧美一-日韩精品一区二区av在线观看-成人久久免费-欧美精品一二三四区-国产午夜免费-亚洲男人第一天堂-一区二区三区福利视频-午夜激情影院-av中文天堂在线-免费一区二区-欧美日韩xxx-91区视频-亚洲另类激情专区小说图片-黄色的网站在线观看-香蕉精品在线

高分網(wǎng) > 通用學(xué)習(xí)方法 > 學(xué)習(xí)方法 >

高三立體幾何學(xué)習(xí)方法

時間: 如英2 學(xué)習(xí)方法
  到了高三階段,同學(xué)們就已經(jīng)有了十二年的學(xué)習(xí)經(jīng)驗(yàn)了,在這漫長的學(xué)海生涯中,經(jīng)過歷練和鉆研,每個人都有一套獨(dú)特的總結(jié)問題的方法,關(guān)于高三立體幾何,也有幾點(diǎn)總結(jié),今天學(xué)習(xí)啦小編就與大家分享:高三立體幾何學(xué)習(xí)方法,希望對大家的學(xué)習(xí)有幫助!

  高三立體幾何學(xué)習(xí)方法一

  立體幾何中兩個最基本的問題,一個是求角度,一個是求距離。

  1求角度的問題:一般解法的關(guān)鍵是把所求角放在一個三角形里,最好是直角三角形,這樣解三角形就可以了。一般的線線角都可以嘗試這種方法,即若角不在三角形里,就注意角的兩邊,在兩邊上找到合適的點(diǎn)做出三角形后解此三角形。

  求線面角和二面角一般是轉(zhuǎn)化為線線角。這里一定要先嘗試三垂線定理。個人經(jīng)驗(yàn)表明至少80%的線面角、二面角題都靠這種方法,極少數(shù)情況下,若發(fā)現(xiàn)線面角和面面角可以直接轉(zhuǎn)化為線線角(比如求二面角時發(fā)現(xiàn)題目已經(jīng)給出一個垂直于兩平面的平面C,那么此平面C與那兩個平面的交線的夾角就是二面角)的話就直接求。而三垂線定理的核心在于那條和平面垂直的線,若題目中給了一條線垂直于一個平面的話就要特別留心加以利用,若沒給就往往需要自己做一條。用三垂線定理可以把所求角轉(zhuǎn)化為線線角并直接放到直角三角形里,是求線面角、二面角最常用的方法。

  2距離:記住異面直線的距離常常是沒法直接求的!公垂線給了能直接求,公垂線沒給的話可能一天也找不到它在哪里。常用的方法是找一個包含一條直線并與另一直線平行的平面,轉(zhuǎn)化為線面距離,或者面面距離。但線面距離和面面距離有時也不好求,常見的方法是再轉(zhuǎn)化成點(diǎn)面距離,然后用三棱錐三組底與高乘積相等的辦法,即體積法可以求出點(diǎn)面距離。

  在學(xué)習(xí)立體幾何的過程中只要掌握了問題的核心,就是把所求問題化繁為簡,這樣接下來的求證部分就能順理成章的完成了。立體幾何部分是數(shù)學(xué)知識中獨(dú)立存在的部分,和其他數(shù)學(xué)關(guān)系不大,只要在學(xué)習(xí)過程中摸尋規(guī)律并掌握方法,就會學(xué)得很好。多練習(xí)多遇到不同體型是有效提高這部分成績的最好的辦法。

  高三立體幾何學(xué)習(xí)方法二

  第一要建立空間觀念,提高空間想象力

  從認(rèn)識平面圖形到認(rèn)識立體圖形是一次飛躍,要有一個過程。有的同學(xué)自制一些空間幾何模型并反復(fù)觀察,這有益于建立空間觀念,是個好辦法。有的同 學(xué)有空就對一些立體圖形進(jìn)行觀察、揣摩,并且判斷其中的線線、線面、面面位置關(guān)系,探索各種角、各種垂線作法,這對于建立空間觀念也是好方法。此外,多用圖表示概念和定理,多在頭腦中“證明”定理和構(gòu)造定理的“圖”,對于建立空間觀念也是很有幫助的。

  第二要掌握基礎(chǔ)知識和基本技能

  要用圖形、文字、符號三種形式表達(dá)概念、定理、公式,要及時不斷地復(fù)習(xí)前 面學(xué)過的內(nèi)容。這是因?yàn)椤读Ⅲw幾何》內(nèi)容前后聯(lián)系緊密,前面內(nèi)容是后面內(nèi)容的根據(jù),后面內(nèi)容既鞏固了前面的內(nèi)容,又發(fā)展和推廣了前面內(nèi)容。在解題中,要書 寫規(guī)范,如用平行四邊形ABCD表示平面時,可以寫成平面AC,但不可以把平面兩字省略掉;要寫出解題根據(jù),不論對于計(jì)算題還是證明題都應(yīng)該如此,不能想 當(dāng)然或全憑直觀;對于文字證明題,要寫已知和求證,要畫圖;用定理時,必須把題目滿足定理的條件逐一交待清楚,自己心中有數(shù)而不把它寫出來是不行的。要學(xué) 會用圖(畫圖、分解圖、變換圖)幫助解決問題;要掌握求各種角、距離的基本方法和推理證明的基本方法——分析法、綜合法、反證法。

  第三要不斷提高各方面能力

  通過聯(lián)系實(shí)際、觀察模型或類比平面幾何的結(jié)論來提出命題;對于提出的命題,不要輕易肯定或否定它,要多用幾個特例進(jìn)行檢驗(yàn),最好做到否定舉出反面例子,肯定給出證明。歐拉公式的內(nèi)容是以研究性課題的形式給出的,要從中體驗(yàn)創(chuàng)造數(shù)學(xué)知 識。要不斷地將所學(xué)的內(nèi)容結(jié)構(gòu)化、系統(tǒng)化。所謂結(jié)構(gòu)化,是指從整體到局部、從高層到低層來認(rèn)識、組織所學(xué)知識,并領(lǐng)會其中隱含的思想、方法。所謂系統(tǒng)化, 是指將同類問題如平行的問題、垂直的問題、角的問題、距離的問題、惟一性的問題集中起來,比較它們的異同,形成對它們的整體認(rèn)識。牢固地把握一些能統(tǒng)攝全 局、組織整體的概念,用這些概念統(tǒng)攝早先偶爾接觸過的或是未察覺出明顯關(guān)系的已知知識間的聯(lián)系,提高整體觀念。

  要注意積累解決問題的策略。如將立體幾何問題轉(zhuǎn)化為平面問題,又如將求點(diǎn)到平面距離的問題,或轉(zhuǎn)化為求直線到平面距離的問題,再繼而轉(zhuǎn)化為求點(diǎn) 到平面距離的問題;或轉(zhuǎn)化為體積的問題。要不斷提高分析問題、解決問題的水平:一方面從已知到未知,另方面從未知到已知,尋求正反兩個方面的知識銜接點(diǎn) ——一個固有的或確定的數(shù)學(xué)關(guān)系。要不斷提高反省認(rèn)知水平,積極反思自己的學(xué)習(xí)活動,從經(jīng)驗(yàn)上升到自動化,從感性上升到理性,加深對理論的認(rèn)識水平,提高解決問題的能力和創(chuàng)造性。

  高三立體幾何學(xué)習(xí)方法三

  一 培養(yǎng)空間想象力

  為了培養(yǎng)空間想象力,可以在剛開始學(xué)習(xí)時,動手制作一些簡單的模型用以幫助想象。例如:正方體或長方體。在正方體中尋找線與線、線與面、面與面之間的關(guān)系。通過模型中的點(diǎn)、線、面之間的位置關(guān)系的觀察,逐步培養(yǎng)自己對空間圖形的想象能力和識別能力。其次,要培養(yǎng)自己的畫圖能力??梢詮暮唵蔚膱D形(如:直線和平面)、簡單的幾何體(如:正方體)開始畫起。最后要做的就是樹立起立體觀念,做到能想象出空間圖形并把它畫在一個平面(如:紙、黑板)上,還要能根據(jù)畫在平面上的“立體”圖形,想象出原來空間圖形的真實(shí)形狀??臻g想象力并不是漫無邊際的胡思亂想,而是以提設(shè)為根據(jù),以幾何體為依托,這樣就會給空間想象力插上翱翔的翅膀。

  二 立足課本,夯實(shí)基礎(chǔ)

  直線和平面這些內(nèi)容,是立體幾何的基礎(chǔ),學(xué)好這部分的一個捷徑就是認(rèn)真學(xué)習(xí)定理的證明,尤其是一些很關(guān)鍵的定理的證明。例如:三垂線定理。定理的內(nèi)容都很簡單,就是線與線,線與面,面與面之間的關(guān)系的闡述。但定理的證明在出學(xué)的時候一般都很復(fù)雜,甚至很抽象。掌握好定理有以下三點(diǎn)好處:

  (1) 培養(yǎng)空間想象力。

  (2) 得出一些解題方面的啟示。

  (3) 深刻掌握定理的內(nèi)容,明確定理的作用是什么,多用在那些地方,怎么用。

  在學(xué)習(xí)這些內(nèi)容的時候,可以用筆、直尺、書之類的東西搭出一個圖形的框架,用以幫助提高空間想象力。對后面的學(xué)習(xí)也打下了很好的基礎(chǔ)。

  三 總結(jié)規(guī)律,規(guī)范訓(xùn)練

  立體幾何解題過程中,常有明顯的規(guī)律性。例如:求角先定平面角、三角形去解決,正余弦定理、三角定義常用,若是余弦值為負(fù)值,異面、線面取銳角。對距離可歸納為:距離多是垂線段,放到三角形中去計(jì)算,經(jīng)常用正余弦定理、勾股定理,若是垂線難做出,用等積等高來轉(zhuǎn)換,高中學(xué)習(xí)方法。不斷總結(jié),才能不斷高。

  還要注重規(guī)范訓(xùn)練,高考中反映的這方面的問題十分嚴(yán)重,不少考生對作、證、求三個環(huán)節(jié)交待不清,表達(dá)不夠規(guī)范、嚴(yán)謹(jǐn),因果關(guān)系不充分,圖形中各元素關(guān)系理解錯誤,符號語言不會運(yùn)用等。這就要求我們在平時養(yǎng)成良好的答題習(xí)慣,具體來講就是按課本上例題的答題格式、步驟、推理過程等一步步把題目演算出來。答題的規(guī)范性在數(shù)學(xué)的每一部分考試中都很重要,在立體幾何中尤為重要,因?yàn)樗⒅剡壿嬐评怼τ诩磳⒓痈呖嫉耐瑢W(xué)來說,考試的每一分都是重要的,在“按步給分”的原則下,從平時的每一道題開始培養(yǎng)這種規(guī)范性的好處是很明顯的,而且很多情況下,本來很難答出來的題,一步步寫下來,思維也逐漸打開了。

  四 逐漸提高邏輯論證能力

27245 剑河县| 沂水县| 奉化市| 剑河县| 巫山县| 遵义市| 卢龙县| 德昌县| 新营市| 林州市| 康马县| 静乐县| 宜丰县| 万盛区| 甘谷县| 南昌市| 百色市| 谢通门县| 阜宁县| 宜都市| 肇东市| 蓬溪县| 武平县| 波密县| 若羌县| 滁州市| 丰顺县| 阜平县| 白沙| 砀山县| 华阴市| 大石桥市| 石狮市| 左云县| 新昌县| 交城县| 河曲县| 沙湾县| 双牌县| 唐山市| 江达县|