2024北京卷高考數(shù)學(xué)試卷
2024北京卷高考數(shù)學(xué)試卷已經(jīng)出來(lái)了,你是不是很好奇今年的考試題型和具體考了什么呢?下面小編給大家?guī)?lái)2024北京卷高考數(shù)學(xué)試卷,供大家參考,希望可以幫助到你??!
2024北京卷高考數(shù)學(xué)試卷
高考數(shù)學(xué)必考知識(shí)點(diǎn)歸納
必修一:1、集合與函數(shù)的概念(部分知識(shí)抽象,較難理解);2、基本的初等函數(shù)(指數(shù)函數(shù)、對(duì)數(shù)函數(shù));3、函數(shù)的性質(zhì)及應(yīng)用(比較抽象,較難理解)。
必修二:1、立體幾何(1)、證明:垂直(多考查面面垂直)、平行(2)求解:主要是夾角問(wèn)題,包括線面角和面面角。
這部分知識(shí)是高一學(xué)生的難點(diǎn),比如:一個(gè)角實(shí)際上是一個(gè)銳角,但是在圖中顯示的鈍角等等一些問(wèn)題,需要學(xué)生的立體意識(shí)較強(qiáng)。這部分知識(shí)高考占22---27分。
2、直線方程:高考時(shí)不單獨(dú)命題,易和圓錐曲線結(jié)合命題。
3、圓方程:
必修三:1、算法初步:高考必考內(nèi)容,5分(選擇或填空);2、統(tǒng)計(jì):3、概率:高考必考內(nèi)容,09年理科占到15分,文科數(shù)學(xué)占到5分。
必修四:1、三角函數(shù):(圖像、性質(zhì)、高中重難點(diǎn),)必考大題:15---20分,并且經(jīng)常和其他函數(shù)混合起來(lái)考查。
2、平面向量:高考不單獨(dú)命題,易和三角函數(shù)、圓錐曲線結(jié)合命題。09年理科占到5分,文科占到13分。
必修五:1、解三角形:(正、余弦定理、三角恒等變換)高考中理科占到22分左右,文科數(shù)學(xué)占到13分左右;2、數(shù)列:高考必考,17---22分;3、不等式:(線性規(guī)劃,聽(tīng)課時(shí)易理解,但做題較復(fù)雜,應(yīng)掌握技巧。高考必考5分)不等式不單獨(dú)命題,一般和函數(shù)結(jié)合求最值、解集。
文科:選修1—1、1—2。
選修1--1:重點(diǎn):高考占30分。
1、邏輯用語(yǔ):一般不考,若考也是和集合放一塊考;2、圓錐曲線;3、導(dǎo)數(shù)、導(dǎo)數(shù)的應(yīng)用(高考必考)。
選修1--2:1、統(tǒng)計(jì);2、推理證明:一般不考,若考會(huì)是填空題;3、復(fù)數(shù):(新課標(biāo)比老課本難的多,高考必考內(nèi)容)。
理科:選修2—1、2—2、2—3。
選修2--1:1、邏輯用語(yǔ);2、圓錐曲線;3、空間向量:(利用空間向量可以把立體幾何做題簡(jiǎn)便化)。
選修2--2:1、導(dǎo)數(shù)與微積分;2、推理證明:一般不考3、復(fù)數(shù)。
選修2--3:1、計(jì)數(shù)原理:(排列組合、二項(xiàng)式定理)掌握這部分知識(shí)點(diǎn)需要大量做題找規(guī)律,無(wú)技巧。高考必考,10分;2、隨機(jī)變量及其分布:不單獨(dú)命題;3、統(tǒng)計(jì)。
高考數(shù)學(xué)解題方法
三角函數(shù)題
第一步一般都是需要將三角函數(shù)化簡(jiǎn)成標(biāo)準(zhǔn)形式asin(wx+fai)+c,接下來(lái)按題做就行了,注意二倍角的降冪作用以及輔助角(合一)公式,周期公式,對(duì)稱軸、對(duì)稱中心、單調(diào)區(qū)間、最大值、最小值都是用整體法求解。
求最值時(shí)通過(guò)自變量的范圍推到里面整體u=wx+fai的范圍,然后可以直接畫sinu的圖像,避免畫平移的圖像。
這部分題還有一種就是解三角形的問(wèn)題,運(yùn)用正弦定理、余弦定理、面積公式,通常有兩個(gè)方向,即角化成邊和邊化成角,得根據(jù)具體問(wèn)題具體分析哪個(gè)方便一些,遇到復(fù)雜的題就把未知量列成未知數(shù),根據(jù)定理列方程組,然后解方程組即可。
數(shù)列題
注意等差、等比數(shù)列通項(xiàng)公式、前n項(xiàng)和公式;證明數(shù)列是等差或等比直接用定義法(后項(xiàng)減前項(xiàng)為常數(shù)/后項(xiàng)比前項(xiàng)為常數(shù)),求數(shù)列通項(xiàng)公式,如為等差或等比直接代公式即可。
其它的一般注意類型采用不同的方法(已知sn求an、已知sn與an關(guān)系求an(前兩種都是利用an=sn-sn-1,注意討論n=1、n>;1),累加法、累乘法、構(gòu)造法(所求數(shù)列本身不是等差或等比,需要將所求數(shù)列適當(dāng)變形構(gòu)造成新數(shù)列l(wèi)amt,通過(guò)構(gòu)造一個(gè)新數(shù)列使其為等差或等比,便可求其通項(xiàng),再間接求出所求數(shù)列通項(xiàng))。
數(shù)列的求和第一步要注意通項(xiàng)公式的形式,然后選擇合適的方法(直接法、分組求和法、裂項(xiàng)相消法、錯(cuò)位相減法、倒序相加法等)進(jìn)行求解。
第二題是立體幾何題,證明題注意各種證明類型的方法(判定定理、性質(zhì)定理),注意引輔助線,一般都是對(duì)角線、中點(diǎn)、成比例的點(diǎn)、等腰等邊三角形中點(diǎn)等等,理科其實(shí)證明不出來(lái)直接用向量法也是可以的。計(jì)算題主要是體積,注意將字母換位(等體積法);
線面距離用等體積法。理科還有求二面角、線面角等,用建立空間坐標(biāo)系的方法(向量法)比較簡(jiǎn)單,注意各個(gè)點(diǎn)的坐標(biāo)的計(jì)算,不要算錯(cuò)。







